INVESTIGATION ON HEAT DISSIPATING PROPERTIES OF ELECTRONIC COMPONENTS WITH THE AIM TO DETERMINE THE CORRECT SIZE OF HEAT SINK

  • Type: Project
  • Department: Electrical Engineering
  • Project ID: ELE0352
  • Access Fee: ₦5,000 ($14)
  • Pages: 51 Pages
  • Format: Microsoft Word
  • Views: 565
  • Report This work

For more Info, call us on
+234 8130 686 500
or
+234 8093 423 853

Research and optimization of cooling of electronic components using heat sinks becomes increasingly important in modern industry. Numerical methods with experimental real world verification are the main tools to evaluate efficiency of heat sinks or heat sink systems. In this research, the physical problems associated with heat removal of electronic systems at different scales were studied.

ABSTRACT

 Research and optimization of cooling of electronic components using heat sinks becomes increasingly important  in  modern industry.  Numerical  methods  with experimental  real world  verification  are  the  main  tools  to  evaluate  efficiency  of  heat  sinks  or  heat  sink systems.  In  this  research,  the  physical  problems  associated  with  heat  removal  of electronic  systems  at  different  scales  were  studied.  Various  electronic  cooling  system designs  and  specific  cooling  techniques  to  improve  performance  were  discussed. Optimization  procedures  and  suggestion  for  better  design  was  proposed.  Power dissipation  performance  must  be  well  understood  prior  to  integrating  devices  on  a circuitboard to ensure that any given device is operated within its defined temperature limits. When adevice is running, it consumes electrical energy that is transformed into heat. Most of the heat is typicallygenerated by switching devices like FETs, ICs, etc. The relationship  between  the  reliability  and  the  operating  temperature  of  a  typical  silicon semiconductor  device  shows  that  a  reduction  in  the  temperature  corresponds  to  an exponential increase in the reliability and life expectancy of the device. Therefore, long life and reliable performance of a component may be achieved by effectively controlling the device operating temperature within the operating limits.  This report discusses the thermal  dissipation  terminology  and  how  to  design  a  proper  heat  sink  for  a  given dissipation limit.    

vi  

TABLE OF CONTENT 

TITLE PAGE ....................................................................................................................... i CERTIFICATION .............................................................................................................. ii DEDICATION ................................................................................................................... iii ACKNOWLEDGEMENT ................................................................................................. iv ABSTRACT ........................................................................................................................ v TABLE OF CONTENTS ................................................................................................... vi 

CHAPTER ONE ................................................................................................................. 1 INTRODUCTION .......................................................................................................... 1 

1.1  Background Information to the Study .............................................................. 1 

1.2  Statement of Problem ....................................................................................... 3 

1.3  Significance of the Research ............................................................................ 5 

1.4  Objective of the Research ................................................................................. 5 

1.5  Definition of Terms .......................................................................................... 8


 CHAPTER TWO .............................................................................................................. 11 LITERATURE REVIEW ............................................................................................. 11 2.1  Background Information ................................................................................. 11 


CHAPTER THREE .......................................................................................................... 22 RESEARCH METHODOLOGY.................................................................................. 22 

 3.1  Design Analysis .............................................................................................. 22 

3.2  Selection of Materials ..................................................................................... 26 

3.3  Experimental Set Up ....................................................................................... 27 

3.4  BILL OF ENGINEERING MEASUREMENT AND EVALUATION ......... 32 


CHAPTER FOUR ............................................................................................................. 33 RESULTS AND DISCUSSION ................................................................................... 33 

4.1  PERFORMANCE TEST ................................................................................ 33 

4.2  PRESENTATION OF RESULTS .................................................................. 33 


CHAPTER FIVE .............................................................................................................. 40

CONCLUSION AND RECOMMENDATION ............................................................ 40 

5.1  Conclusion ...................................................................................................... 40 

5.2  Recommendation ............................................................................................ 40

REFERENCES ................................................................................................................. 41 

INVESTIGATION ON HEAT DISSIPATING PROPERTIES OF ELECTRONIC COMPONENTS WITH THE AIM TO DETERMINE THE CORRECT SIZE OF HEAT SINK
For more Info, call us on
+234 8130 686 500
or
+234 8093 423 853

Share This
  • Type: Project
  • Department: Electrical Engineering
  • Project ID: ELE0352
  • Access Fee: ₦5,000 ($14)
  • Pages: 51 Pages
  • Format: Microsoft Word
  • Views: 565
Payment Instruction
Bank payment for Nigerians, Make a payment of ₦ 5,000 to

Bank GTBANK
gtbank
Account Name Obiaks Business Venture
Account Number 0211074565

Bitcoin: Make a payment of 0.0005 to

Bitcoin(Btc)

btc wallet
Copy to clipboard Copy text

500
Leave a comment...

    Details

    Type Project
    Department Electrical Engineering
    Project ID ELE0352
    Fee ₦5,000 ($14)
    No of Pages 51 Pages
    Format Microsoft Word

    Related Works

    CONSTRUCTION OF HEAT EXCHANGER FABRICATION OF A TUBE AND SHELL HEAT EXCHANGER SYSTEM ABSTRACT There are two methods of constructing heat exchangers: Plate type. Parallel flow-the hot fluid and the coolant flow in the same direction. Counter flow:- The hot fluid and the coolant flow in opposite direction. Cross flow: The hot fluid and the coolant... Continue Reading
    ABSTRACT   Organizational justice is an essential component and predictor of successful organizations. Organization that is fair and just in its procedures, policies, interactions and distribution systems, employees of that organization give better response to the organization in terms of their positive behaviours and productivity thus the main... Continue Reading
    ABSTRACT The effect of Heat treatment on the Mechanical Properties of a welded joint of medium carbon steel has been carried out. The materials were cut, welded, to get 27 samples needed. Thereafter, Heat Treatment was carried out on the samples. Then the specimens were grouped into two groups, group A and group B. In group A, after the heat... Continue Reading
    ABSTRACT The effect  of Heat treatment on the Mechanical Properties of a welded joint of medium carbon steel has been carried out.  The materials were cut, welded, to get 27 samples needed. Thereafter, Heat Treatment was carried out on the samples. Then the specimens were grouped into two groups, group A and group B. In group  A, after the heat... Continue Reading
    ABSTRACT In the present work, STAR-CCM+ CFD code was used to investigate steady state thermal hydraulic parameters in the core of Ghana Research Reactor-1 (GHARR-1). The core was segmented into 21 axial segments. 3D-CAD parametric solid modeler embedded in STARCCM+ was used to model the geometry. The geometry was discretized by the use of... Continue Reading
    ABSTRACT The aim of this project was to construct shell and tube heat exchanger with fixed boundless. A heat exchanger that would cool 5 x 5 x 10 – 3 kg/s of steam at a calculated heat load of 152 – 395/S was fabricated. The steam is to reach the heat exchanger from a distillation column at a temperature of 300k. The specification of... Continue Reading
    ABSTRACT The aim of this project was to construct shell and tube heat exchanger with fixed boundless. A heat exchanger that would cool 5 x 5 x 10 – 3 kg/s of steam at a calculated heat load of 152 – 395/S was fabricated. The steam is to reach the heat exchanger from a distillation column at a temperature of 300k. The specification of... Continue Reading
    INTRODUCTION The most common type of heat exchanger used in industry contains a number of parallel tubes enclosed in a shell and is thus called a shell and tube heat exchanger. These heat exchangers are employed when a process required large quantities of fluid to be heated or cooled. Due to their compact design, these heat exchangers contain a... Continue Reading
    ABSTRACT The precise content of this project was to construct a model shell and tube heat exchanger. The material for construction of this project (equipment) and their dimensions are as follows: 1. 500mm length of a tube bundle 2. 20mm diameter of the tube bundle 3. 650mm length of the shell 4. 120mm diameter of the shell 5. 70mm length of the... Continue Reading
    ABSTRACT The precise content of this project was to construct a model shell and tube heat exchanger. The material for construction of this project (equipment) and their dimensions are as follows: 500mm length of a tube bundle 20mm diameter of the tube bundle 650mm length of the shell 120mm... Continue Reading
    Call Us
    whatsappWhatsApp Us