project topics and materials
Rated 5/5 based on 7,652 reviews
Get your final year project topics with full and complete project materials Project Topics,research topics, project writing, administration in education, project on education, Project Materials, computer science project topics, final year project topics, educational materials, engineering projects, Research Materials, computer project topics, research project topics, projects on education, electrical engineering projects,accounting projects, science project topics, electrical projects, electrical engineering project, mechanical engineering projects, economics topics, accounting project topics, project on economics, mechanical projects, education research topics, project topics in education, research topics on education, research topics in education, project topics on management, research project on education, education sites, about business administration, biology project topics, mass communication project, projects for engineering students, project topics for management, chemistry project topics, list of research topics, education research paper topics, educational site, management project topics, Economics project topics, electronics project topics, electronics engineering projects, project topics in accounting, research topic ideas, banking project topics, project topics on finance, electronics projects topics, public administration project topics, project topics on marketing, Easy Project Topics, project on business administration, marketing project topics, finance project topics, computer science project topic, electrical project topics, educational administration and management, projects on economics, project topic on finance, project topics on banking, interesting research topics, Business administration project topics, Project Topics and Material, project topics in economics, mass communication project topics, project topics in communication, topics in economics, business administration project, electronic project topics, electronic engineering projects, educational research topics, research topics on economics, Gross Archive, mba project topics, marketing project topic, economic topics, project topic on marketing, educational management project, topics on business administration, business administration management, business administration pdf, project topics in marketing, Gross Archive.com, project topics in management, research topics in economics, economic research topics, electrical and electronics projects, research projects in education, topics on banking and finance, business, administration and management, business research topics, project topics for marketing, business management research topics, economics research topics, electrical project topic, economic topics for research, economic research topic, project topic in marketing, final year it projects topics, project topics in finance, gross project, research topic in education, research topic in economics, electronics projects for engineering students, what is business administration and management, all about business administration, research topics in business management, electrical projects for engineering students, research topics about education, project topics for it final year"> .
Lagos, Nigeria
Nigeria
Lagos State
Nigeria
+234 813 0686 500
+234 809 3423 853
info@grossarchive.com

DIFFERENTIATION AND IT’S APPLICATIONS

(Mathematics)

DIFFERENTIATION AND IT’S APPLICATIONS

ABSTRACT

  The project is written simply to illustrate on differentiations and their applications. The formation and classification of differentiation, the basic techniques of differentiations, list of derivatives and the basic applications of differentiation, which include motion, economic and chemistry.

TABLE OF CONTENT

CHAPTER ONE

  1. General Introduction

1.1Background Of Study

1.2 Statement Of The Problem

1.3 Aim And Objectives

1.4 Definitions Of Terms

1.5 Differentiation rules

            CHAPTER TWO

  1. Literature Review

2.1 Introduction

2.2 Roberual Method Of Tangent Lines Using Instantaneous Motion

2.3 The Elusive Inverses-The Differential

2.4 Newton and Leibniz

2.5 The Ellusive Inverses

              CHAPTER THREE

3.0 Differential Calculus

3.1 List of Derivatives

3.1.1 Simple Functions

3.1.2 Exponential And Logarithmic Functions

3.1.3 Trigonometric Functions

3.1.4 Inverse Trigonometric Functions

3.2 Techniques Of Differentiation

       3.2.1 The Power Rule

       3.2.2 The Product Rule

       3.2.3 The Quotient Rule

       3.2.4 The Chain Rule

       3.2.5 The Implicit Differentiation

       3.2.6 The Higher Order Derivation

            CHAPTER FOUR

4.0 Applications of differentiation

4.1 Introduction

4.2 Application To Motion

4.3 Application To Economics

4.4 Application To Chemistry

            CHAPTER FIVE

5.0 Summary and Conclusion

5.1 Summary

5.2 Conclusion

REFERENCE

CHAPTER ONE

  1. GENERAL INTRODUCTION

Differentiation is a process of looking at the way a function changes from one point to another. Given any function we may need to find out what it looks like when graphed. Differentiation tells us about the slope (or rise over run, or gradient, depending on the tendencies of your favorite teacher). As an introduction to differentiation we will first look at how the derivative of a function is found and see the connection between the derivative and the slope of the function.

Given the function f (x), we are interested in finding an approximation of the slope of the function at a particular value of x. If we take two points on the graph of the function which are very close to each other and calculate the slope of the line joining them we will be approximating the slope of f (x) between the two points. Our x-values are x and x + h, where h is some small number. The y-values corresponding to x and x + h are f (x) and f (x + h). The slope m of the line between the two points is given by

Where  and  are the two points.

Hence m is called the slope or change which is the differentiation.

The primary objects of study in differentiation are the derivative of a function, related notions such as the differential and their applications. The derivate of a function at a chosen input value. 

1.1 BACKGROUND OF THE STUDY

Historically, the primary motivation for the study of differentiation was the tangent line problem: for a given curve, find the slope of the straight line that is tangent to the curve at a given point. The word tangent comes from the Latin word “tangens”, which means touching. Thus, to solve the tangent line problem, we need to find the slope of a line that is “touching” a given curve at a given point, or, in modern language, that has the same slope. But what exactly do we mean by “slope” for a curve?

The solution is obvious in some cases: for example, a line  is its own tangent; the slope at any point is . For the parabola  the slope at the point  is 0; the tangent line is horizontal.

 In mathematics, differential calculus (differentiation) is a subfield of calculus concerned with the study of the rates at which quantities change. It is one of the two traditional divisions of calculus, the other being integral calculus (integration).

The primary objects of study in differential calculus are the derivative of a function, related notions such as the differential, and their applications. The derivative of a function at a chosen input value describes the rate of change of the function near that input value. The process of finding a derivative is called differentiation. Geometrically, the derivative at a point is the slope of the tangent line to the graph of the function at that point, provided that the derivative exists and is defined at that point. For a real-valued function of a single real variable, the derivative of a function at a point generally determines the best linear approximation to the function at that point.

Differentiation and integration are connected by the fundamental theorem of calculus, which states that differentiation is the reverse process to integration.

Differentiation has applications to nearly all quantitative disciplines. For example, in physics, the derivative of the displacement of a moving body with respect to time is the velocity of the body, and the derivative of velocity with respect to time is acceleration. The derivative of the momentum of a body equals the force applied to the body; rearranging this derivative statement leads to the famous F = maequation associated with Newton's second law of motion. The reaction rate of a chemical reaction is a derivative. In operations research, derivatives determine the most efficient ways to transport materials and design factories.

Derivatives are frequently used to find the maxima and minima of a function. Equations involving derivatives are called differential equations and are fundamental in describing natural phenomena. Derivatives and their generalizations appear in many fields of mathematics, such as complex analysis, functional analysis, differential geometry, measure theory and abstract algebra.

 

1.2 STATEMENT OF THE PROBLEM

Differentiation is a technique which can be used for analyzing the way in which functions change. In particular, it measures how rapidly a function is changing at any point. This research intends to examine the differential calculus and its various applications in various fields, solving problems using differentiation. This work is to show the important of differentiation, that it is not limited to mathematics alone, it is applied in our day to day life, it has its own share in  our sciences * motion, economic, chemistry. e.t.c).

1.3 AIM AND OBJECTIVES

·         To show that differentiation is not limited to mathematics alone.

·         To relate differentiation to velocity and acceleration in motion.

·         To relate differentiation in calculating rate of change of chemical reactions.

·         How differentiation affects performance of demand and supply between buyers and sellers in economic.

1.4 DEFINITIONS OF TERMS

Differentiations have a lot of terms (in terms of identifications) which we use in identifying what type of differentiation is it or what type of differential equation are we working on, which are called The Notations For Differentiation. There are two main types of notation used to denote the derivative of a function.

Lagrange’s Notation is to write the derivative of the function as

Leibniz’s Notation is to write the derivative of the function  as

Two other notations are worth mentioning

Newton’s Notation is to write the derivative of  using a dot

Euler’s Notation is to use a capital D i.e.

The Lagrange and Leibniz notation will be considered in some situations involving differentiation.

 

Lagrange

Leibniz

Function

Derivative

 

 

2nd Derivative

 

 

Higher Derivative

 

 

Integral

 

1.5 Differentiation rules

Product Rule

 

Lagrange

Leibniz

 

Chain Rule

 

Lagrange

Leibniz

 

Implicit Differentiation

(say of

Lagrange

Leibniz

 

 

TERMS AND CONDITIONS

Using our service is LEGAL and IS NOT prohibited by any

university/college policies

You are allowed to use the original model papers you will receive in

the following ways:

1. As a source for additional understanding of the subject

2. As a source for ideas for you own research (if properly referenced)

3. For PROPER paraphrasing (see your university definition of plagiarism and acceptable paraphrase)

4. Direct citing (if referenced properly)

Thank you so much for your respect to the authors copyright.

For more project materials

Log on to www.grossarchive.com

Or call

+2348130686500

+2348093423853

 

=

Comments

Write a comment ...
Post comment
Cancel

Project Details

Department Mathematics
Project ID MTH0008
Price N3000 ($14)
CHAPTERS 5 Chapters
No of Pages 51 Pages
Methodology Scientific Method
Reference YES
Format Microsoft Word