# Project Topic on MATHEMATICAL MODELING OF THE EFFECT OF IRRESPONSIBLE IMMIGRANT ON THE TRANSMISSION DYNAMICS OF HIV

• Type: Project
• Department: Mathematics
• Project ID: MTH0076
• Access Fee: ₦5,000 (\$14)
• Chapters: 5 Chapters
• Pages: 39 Pages
• Methodology: Statistical Analysis
• Reference: YES
• Format: Microsoft Word
• Views: 905

+234 8130 686 500
or
+234 8093 423 853

ABSTRACT

This project proposes a non – linear mathematical model to study the effect of irresponsible infected immigrants on the spread of HIV/AIDS in a heterogeneous population with a constant recruitment of susceptible. The equilibrium points, stability analysis and numerical simulation on the model are presented. It is realised that at the disease – free equilibrium, the model is stable when the basic reproduction number R0<1 and unstable otherwise. The Routh – Hurwitz stability condition was employed to examine the stability of the disease – free equilibrium. Also, the endemic equilibrium is stable as it satisfies the Bellman and Cooke’s condition for stability. The analysis further shows that strict immigration policies such as screening and reduction in the number of immigrants into a given population, and behavioural change of all classes of individuals should be considered in efforts aimed at controlling the spread of the disease.

COVER PAGE

TITLE PAGE                                                                                                                              i

DECLARATION                                                           ii

DEDICATION                                                                            iii

APPROVAL PAGE                                                                                                                  iv

ACKNOWLEDGEMENT                                                                                                        v

TABLE OF CONTENT                                                                                                            vi

ABSTRACT                       viii                                                                                                                                                                                                                                                                                                                                                                                                                                                     CHAPTER ONE: INTRODUCTION

1.1   Background of Study                                                                                                       1

1.2   Statement of the Problem         5

1.3   Aim and Objectives of the Study

1.4   Significance of Study                                                                6

1.5   Scope of the Study                                                                                                           7

1.6   Operational Definition of Terms                                                                               8

CHAPTER TWO: LITERATURE REVIEW

2.0       Introduction                                                                                                                     10

2.1       Modeling Infectious Disease    10

CHAPTER THREE: METHODOLOGY

3.0       Introduction                                    15

3.1       Existing Model Formation and Equilibrium States          15

3.2       Modified Model                              17

3.3       Equilibrium State of the Model               20

CHAPTER FOUR: STABILITY ANALYSIS OF THE EQUILIBRIUM STATES

4.1       Stability of Disease – free Equilibrium State            23

4.2       Stability of the Endemic Equilibrium State                                                                       29

CHAPTER FIVE: SUMMARY, CONCLUSION AND RECOMMENDATIONS

5.1       Summary                                                                                                   35

5.2       Conclusion                                                            35

5.3       Recommendation                                                                    36

REFERENCE

MATHEMATICAL MODELING OF THE EFFECT OF IRRESPONSIBLE IMMIGRANT ON THE TRANSMISSION DYNAMICS OF HIV
+234 8130 686 500
or
+234 8093 423 853

• Type: Project
• Department: Mathematics
• Project ID: MTH0076
• Access Fee: ₦5,000 (\$14)
• Chapters: 5 Chapters
• Pages: 39 Pages
• Methodology: Statistical Analysis
• Reference: YES
• Format: Microsoft Word
• Views: 905
Payment Instruction
##### Bank payment for Nigerians, Make a payment of ₦ 5,000 to

Bank GTBANK
Account Number 0211074565

### Bitcoin(Btc)

 Copy to clipboard Copy text

#### Details

 Type Project Department Mathematics Project ID MTH0076 Fee ₦5,000 (\$14) Chapters 5 Chapters No of Pages 39 Pages Methodology Statistical Analysis Reference YES Format Microsoft Word

#### Related Works

ABSTRACT Tuberculosis, an air-borne infectious disease, remains a major threat to public health in Kenya. In this study we derived a system of non-linear ordinary differential equations from SLICR mathematical model of TB to study the effects of hygiene consciousness as a control strategy against TB in Kenya. The effective basic reproduction... Continue Reading
ABSTRACT This study proposes and analyzes a non-linear mathematical model for the dynamics of HIV/AIDS with treatment and vertical transmission. The equilibrium points of the model system are found and their stability is investigated. The model exhibits two equilibria namely, the disease-free and the endemic equilibrium. It is found that if the... Continue Reading
ABSTRACT This study proposes and analyzes a non-linear mathematical model for the dynamics of HIV/AIDS with treatment and vertical transmission. The equilibrium points of the model system are found and their stability is investigated. The model exhibits two equilibria namely, the disease-free and the endemic equilibrium. It is found that if the... Continue Reading
ABSTRACT In this study, we have formulated a mathematical model based on a system of ordinary differential equations to study the dynamics of typhoid fever disease incorporating protection against infection. The existences of the steady states of the model are determined and the basic reproduction number is computed using the next generation... Continue Reading
ABSTRACT In this research work, Mathematical Model for Measles Transmission Dynamics in Luweero District of Uganda, SVEIR model was developed and analyzed. The model consists of five non liner ordinary differential equations. The effective reproductive number, (the number of secondary infections when a single effective individual is introduced... Continue Reading
Abstract In this research work, Mathematical Model for Measles Transmission Dynamics in Luweero District of Uganda, SVEIR model was developed and analyzed. The model consists of five non liner ordinary differential equations. The effective reproductive number, (the number of secondary infections when a single effective individual is introduced... Continue Reading
ABSTRACT This research work focused on the use of an hybrid RANS-LES turbulence model in simulating and checking the drag performance characteristics of an aerodynamic vehicle. The Spalart-Allmaras shear stress transport (SST)- Scale Adaptive Simulation (SAS) Turbulence model was selected for use, and with the help of OpenFOAM Finite Volume... Continue Reading
ABSTRACT Simple population growth models involving birth rate, death rate, migration, and carrying capacity of the environment were considered. Furthermore, the particular case where there is discrete delay according to the sex involved in the population growth were treated. The equilibrium and stability analysis of each of the cases were... Continue Reading
ABSTRACT: Infectious  disease  has  become  a  source  of  fear  and  superstition  since  the first  ages  of  human  civilization.  In  this  study,  we  consider  the  Discrete  SIR  model for  disease  transmission  to  explain  the  use  of  this  model  and  also  show  significant explanation  as ... Continue Reading
ABSTRACT: Infectious  disease  has  become  a  source  of  fear  and  superstition  since  the first  ages  of  human  civilization.  In  this  study,  we  consider  the  Discrete  SIR  model for  disease  transmission  to  explain  the  use  of  this  model  and  also  show  significant explanation  as ... Continue Reading