+234 813 0686 500
+234 809 3423 853
info@grossarchive.com

Neuroprotective Effect of Croton Zambesicus Phenolic Extract on Synaptosomes of Rats Exposed to Environmental Toxicant

  • Type:Project
  • Pages:92
  • Format:Microsoft Word
(Bio-Chemistry Project Topics & Materials)

ABSTRACT

Exposure to environmental toxicant was known to cause neuronal disorders in humans. Hence, the present study evaluates the toxic effect of leachate (an environmental toxicant) in the synaptosomes of female rats and the reversal effect of phenolic-rich fraction from Croton zambesicus. Fifty animals were divided into five groups. Group I (Control) received 0.5ml of distilled water only, Group II (non-withdrawal) received 0.5ml of leachate for 14 weeks, Group III (withdrawal) received 0.5ml of leachate for 11 weeks and withdrawn for 3 weeks, Group IV (L+EXTRACT) received 0.5ml of leachate for 11 weeks and 400mg/kg extract for 3 weeks, Lastly, Group V (EXTRACT ONLY) received 400mg/kg extract only for 3 weeks. The experiment lasted for 14 weeks. Both non-withdrawal and withdrawal exposure of animals to leachate caused oxidative and neuronal damage. This study suggests that battery recycling site leachate elicits damage in female rats’ synaptosomes by increasing the malondialdehyde level, and decreasing Reduced glutathione level. The activities of catalase, superoxide dismutase, Lactate dehydrogenase and other enzymatic antioxidants were decreased, also the activities of aminerging catabolizing enzymes i.e Acetylcholinesterase, Butyrylcholinesterase and Monoamine oxidase were also elevated. The phenolic-rich fraction from Croton zambesicus significantly reversed the toxicity. The preventive and protective effect of phenolic compounds (Gallic acid, Caffeic acid, Quercetin, Luteolin and Apigenin) from phenolic-rich fraction from Croton zambesicus validates that they have therapeutic application in neuronal and oxidative damage of the brain.

TABLE OF CONTENT
Title page                                                                                                                                 i
Certification                                                                                                                             ii
Dedication                                                                                                                               iii
Acknowledgement                                                                                                                  iv                                                                                                                                  
Table of contents                                                                                                                    v-ix
List of Figures                                                                                                                         x
List of Tables xi-xii
Abstract xiv
CHAPTER ONE
1.0       Introduction                1-3
1.1       Justification 3
1.2       Aims 3
1.3       Objectives 4
CHAPTER TWO
2.0       Literature review 5
2.1          Medicinal plants 5
2.1.1       Croton zambesicus 5-7
2.2          Antioxidants 8
2.2.1       Flavonoids and phenolic acids 8-9
2.2.1.1.   Gallic acid 9
2.2.1.2   Luteolin 9
2.2.1.3   Quercitin 10
2.2.1.4   Caffeic acid  10
2.2.1.5   Apigenin 10-11
2.2.2.     Tannins 11-12
2.2.3      Polyphenols 12
2.2.4      Saponins 12-13
2.3.1      Elewi odo battery recycling site                                                                                13
2.4         Neurotoxicity 13-15
2.4.1     Alzheimer’s disease 15-16
2.5.1      Free radicals 16
2.5.2      Reactive Oxygen Species 16-17
2.5.3      Oxidative stress             17-19
2.5.3.1   Chemical and Biological effects of oxidative stress            19
2.5.4     Oxidative stress and neurotoxicity             20
2.6.1     Endogenous antioxidants 20
2.6.2     Antioxidant enzymes 20-21
2.7         Lipid peroxidation 21-23
2.7.1      Malondialdehyde 23
2.7.1.1   Structure and Synthesis 23-24
2.7.1.2    Metabolism of Malondialdehyde 24
2.8         Acetylcholine, Butyrylcholine and Monoamine oxidase 25-26
2.9         Lactate dehydrogenase and 5’Nucleotidase 26
CHAPTER THREE
3.0         Materials and Methods 27
3.1         Materials 27
3.1.1      Plant Collection 27
3.1.2      Experimental Animal 27
3.1.3      Collection of the Battery recycling site leachate 27
3.1.4      Chemicals and Reagents 27-28
3.2         Methods 28
3.2.1      Preparation of phenolic extract 28
3.2.2      Method of HPLC-DAD 28-29
3.2.3     LOD and LOQ 29
3.2.4     Animal exposure to EBRSL 29-30
3.2.5     Preparation of the synaptosomal fraction of the brain 30
3.3        In-Vivo analysis 30
3.3.1     Estimation of Reduced Glutathione level 30-32
3.3.2     Assessment of Lipid peroxidation 32-34
3.3.3     Determination of Catalase activity 34-36
3.3 Determination of Tissue Lactate dehydrogenase 36
3.3.5     Determination of Superoxide dismutase activity 36-38
3.3.6     Estimation of Glutathione-S- transferase level 38-40
3.3.7     Neuronal 5’ Nucleotidase 40-43
3.3.8     Protein determination 44-45
3.3.9     Acetylcholinesterase inhibition 45-46
3.3.10   Butyrylcholinesterase inhibition 46-47
3.3.11    Monoamine Oxidase 47-48
3.4        Statistical Analysis 48
CHAPTER FOUR
4.0       Results and discussion 49
4.1 Results 49
4.1.2 Histopathology 65
4.2 Discussion 68-70
4.3 Conclusion 70
References 71-81
Appendix 82-91






LIST OF FIGURES
Figure 2.1:  Picture showing Croton zambesicus 7
Figure 2.2:  Structure Showing Oxidative stress and cellular responses 18
Figure 2.3:  Structure of malondialdehyde 23
Figure 4.1: HPLC Profile of extracts 51
Figure 4.2: Catalase activity 54
Figure 4.3: Reduced glutathione level 55
Figure 4.4 MDA level 56
Figure 4.5: Superoxide dismutase activity 57
Figure 4.6a : Mono-amine oxidase activity for PMF                                     58
Figure 4.6b: Mono-amine oxidase activity for synaptosomes        59
Figure 4.7: Lactate dehydrogenase activity 60
Figure 4.8: Acetyl cholinesterase activity 61
Figure 4.9: Butryl cholinesterase activity 62
Figure 4.10: Neuronal-5’-Nucleotidase 63
Figure 4.11: Glutathione -S-tranferase activity 64
Figure 4.12: Histopathology; Control 65
Figure 4.13: Histopathology; Leachate-nonwithdrawal 65
Figure 4.14: Histopathology; Leachate-withdrawal 66
Figure 4.15: Histopathology; Leachate + Extract 66
Figure 4.16: Histopathology; Extract only 67













LIST OF TABLES
Table 1:  Characterization of organic pollutants in EBRSL 49
Table 2: Quantitative phytochemical screening of Croton zambesicus 50
Table 3:  Component of extract 52
Table 4: Effect of Croton zambesicus on weight of animals 53
Table 5: Protocol for the preparation of GSH standard curve 83
Table 6: Protocol for the preparation protein standard curve 84
Table 7: Protocol for the preparation of catalase standard curve 85
Table 8: Lactate dehydrogenase activity 86
Table 9: Reduced glutathione activity 86
Table 10: Glutathione- S- transferase activity 87
Table 11: Superoxide dismutase activity 87
Table 12: Catalase activity 88
Table 13: Lipid peroxidation level 88
Table 14: Neuronal- 51- nucleotidase activity 89
Table 15: Acetyl cholinesterase activity 89
Table 16: Butryl cholinesterase activity 90
Table 17a: Mono-amine oxidase activity for PMF 90
Table 17b: Mono-amine oxidase activity for synaptosomes 91












Neuroprotective Effect of Croton Zambesicus Phenolic Extract on Synaptosomes of Rats Exposed to Environmental Toxicant

Share This

Details

Type Project
Department Bio-Chemistry
Project ID BCH0165
Price ₦3,000 ($9)
No of Pages 92 Pages
Format Microsoft Word

500
Leave a comment...

    Details

    Type Project
    Department Bio-Chemistry
    Project ID BCH0165
    Price ₦3,000 ($9)
    No of Pages 92 Pages
    Format Microsoft Word

    Related Works

    TABLES OF CONTENT TITLE PAGE i CERTIFICATION ii DEDICATION iii ACKNOWLEDGEMENT IV TABLES OF CONTENT V ABSTRACT VI CHAPTER ONE 1.0 INTRODUCTION 1.1 LITERATURE REVIEW 1.2 THE LIVER 1.2.1 CARBON TETRACHLORIDE 1.3.0 LIVER FUNCTION TEST 1.3.1 TOTAL CHOLESTEROL 1.3.6 FUNCTIONS OF THE LIVER 1.6.0 LIPID PEROXIDATION 1.8.2 BOTANICAL DESCRIPTION OF DENNETIA... Continue Reading
    TABLES OF CONTENT TITLE PAGE i CERTIFICATION ii DEDICATION iii ACKNOWLEDGEMENT IV TABLES OF CONTENT V ABSTRACT VI CHAPTER ONE 1.0 INTRODUCTION 1.1 LITERATURE REVIEW 1.2 THE LIVER 1.2.1 CARBON TETRACHLORIDE 1.3.0 LIVER FUNCTION TEST 1.3.1 TOTAL CHOLESTEROL 1.3.6 FUNCTIONS OF THE LIVER 1.6.0 LIPID PEROXIDATION 1.8.2 BOTANICAL DESCRIPTION OF DENNETIA... Continue Reading
    TITLE PAGE THE EFFECT OF HYDROALCOHOLIC EXTRACT OF AFRAMOMUM MELEGUETA ON SUPEROXIDE DISMUTASE ACTIVITY IN ALLOXAN INDUCED DIABETIC WISTAR ALBINO RATS BY EBELEME   EBENEZER NAU/ 2012474175 SUBMITTED TO THE DEPARTMENT OF APPLIED BIOCHEMISTRY FACULTY OF BIOSCIENCES IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE AWARD OF A BACHELOR OF SCIENCE... Continue Reading
    ABSTRACT Cola nitida has been in use in the eastern parts of Nigeria for the management of certain ailments and as an aphrodisiac in the management of some sexual dysfunctions. However the effects of this extract in some health parameters in human objects have not been reported. This work, then, was aimed at investigating the effect of water... Continue Reading
    ABSTRACT This study evaluated the antilipidemic activity of water extracts from leaves of Desmodium velutinum on albino wistar rats. The phytochemical analysis of the leaf extract showed the presence of tannins, saponins, alkaloids, soluble carbohydrates, flavonoids, reducing sugar, steroids, cyanide and terpenoids. The animals were treated with... Continue Reading
    ANTILIPIDEMIC EFFECT OF WATER (H20) EXTRACT OF DESMODIUM VELUTINUM LEAVES ON ALBINO WISTAR RATS ABSTRACT This study evaluated the antilipidemic activity of water extracts from leaves of Desmodium velutinum on albino wistar rats. The phytochemical analysis of the leaf extract showed the presence of tannins, saponins, alkaloids, soluble... Continue Reading
    ABSTRACT This study evaluated the antilipidemic activity of water extracts from leaves of Desmodium velutinum on albino wistar rats. The phytochemical analysis of the leaf extract showed the presence of tannins, saponins, alkaloids, soluble carbohydrates, flavonoids, reducing sugar, steroids, cyanide and terpenoids. The animals were treated with... Continue Reading
    ABSTRACT Cola nitida has been in use in the eastern parts of Nigeria for the management of certain ailments and as an aphrodisiac in the management of some sexual dysfunctions. However the effects of this extract in some health parameters in human objects have not been reported. This work, then, was aimed at investigating the effect of water... Continue Reading
    ABSTRACT This study evaluated the antilipidemic activity of water extracts from leaves of Desmodium velutinum on albino wistar rats. The phytochemical analysis of the leaf extract showed the presence of tannins, saponins, alkaloids, soluble carbohydrates, flavonoids, reducing sugar, steroids, cyanide and terpenoids. The animals were treated with... Continue Reading
    ABSTRACT Cola nitida has been in use in the eastern parts of Nigeria for the management of certain ailments and as an aphrodisiac in the management of some sexual dysfunctions. However the effects of this extract in some health parameters in human objects have not been reported. This work, then, was aimed at investigating the effect of water... Continue Reading