+234 813 0686 500
+234 809 3423 853
info@grossarchive.com

THE KINETIC STUDY ON HYDROLYSIS OF CELLULOSE (SAW-DUST)

  • Type:Project
  • Pages:49
  • Format:Microsoft Word
(Chemical Engineering Project Topics & Materials)
ABSTRACT
This research project studied on the kinetics of hydrolysis of cellulose to glucose. The steps employed to achieve this project involved extraction of cellulose from sawdust and subsequently, hydrolysis of starch to simple sugar. This was followed by glucose analysis. Different experiments were conducted during acid hydrolysis to study the various acids on the hydrolysis of cellulose to glucose. The saw-dust was extracted from the wood by grinding using saw. The process used in the hydrolysis was acid hydrolysis in which two major inorganic acids (Hydrochloric and Sulfuric) were used at constant temperature of 80oC. During this experiment, it was observed that Hydrochloric acid hydrolyzed most, followed by Sulphuric acid. Finally, sugar analysis was carried out to determine the acid with the highest yield of glucose and the best acid for the hydrolysis. It was noticed that the yield of glucose was relatively high from HCl at 1.280% concentration, followed by H2SO4 at 0.940%. It was also seen from the graph that the absorbance yield increases as the glucose concentrations increases in terms of HCl. Therefore, the best acid for acid for acid hydrolysis is HCl.

TABLE OF CONTENTS
Title page - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - I
Caritas logo - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - II
Dedication - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -III
Certification - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - IV
Acknowledgment - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -V
Approval page - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -VI
Abstract - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -VII
Table of contents - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - VIII

CHAPTER ONE
1.1 Introduction - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 1
1.2 Sources of cellulose - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 2
1.3 Hydrolysis - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 3
1.4 Statement of the problem - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -4
viii
1.5 Relevance of the study - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 5
1.6 Objective and scope of the study - - - - - - - - - - - - - - - - - - - - - - - - - - -6

CHAPTER TWO
2.1 Literature review - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 7
2.2 History of cellulose - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 11
2.3 Occurences - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 12
2.4 Energy store of plants - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 13
2.5 Biosynthesis of cellulose - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 14
2.6 Structures of cellulose - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 15
2.7 Classifications of cellulose - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 16
2.7.1 Cellulose Nitrate - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 17
2.7.2 Cellulose Acetate - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 18
2.7.3 Cellulose Acetate Butyrate - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -19
2.7.4 Ethyl cellulose - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -20
2.7.5 Methyl cellulose - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 20
2.7.6 Carboxy Methyl cellulose - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 21
2.8 Hemicellulose - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 23
2.9 Breakdown (cellulolysis) - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 23
2.10 Functions of cellulose - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 24
2.11 Uses of sugar - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 25
2.12 Functions of sugar - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 27
2.13 Properties of cellulose - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 28
2.14 Methods of producing glucose from cellulose - - - - - - - - - - - - - - - - - - -29

CHAPTER THREE
3.0 Methodology - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -30
3.1 Materials and Equipment - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 30
3.1.1 Apparatus - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -30
3.2 Reagents - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 31
3.2.1 Hydrolysis (Acid hydrolysis) - - - - - - - - - - - - - - - - - - - - - - - - - - - - -32
3.2.2 Calorimetric Analysis of Glucose (using Benedict‟s solution) - - - - - - 33

CHAPTER FOUR
4.1 Results - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -35
4.2 Tables - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -36
4.3 Discussions - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 39

CHAPTER FIVE
5.1 Conclusion - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 41
5.2 Recommendation - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 42
References - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 43
Appendix I - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 45
Appendix II - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 47
List of Tables - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 49
List of figure - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 49

THE KINETIC STUDY ON HYDROLYSIS OF CELLULOSE (SAW-DUST)

Share This

Details

Type Project
Department Chemical Engineering
Project ID CNG0244
Price ₦3,000 ($9)
No of Pages 49 Pages
Format Microsoft Word

500
Leave a comment...

    Details

    Type Project
    Department Chemical Engineering
    Project ID CNG0244
    Price ₦3,000 ($9)
    No of Pages 49 Pages
    Format Microsoft Word

    Related Works

    ABSTRACT This research project studied on the kinetics of hydrolysis of cellulose to glucose. The steps employed to achieve this project involved extraction of cellulose from sawdust and subsequently, hydrolysis of starch to simple sugar. This was followed by glucose analysis. Different experiments were conducted during acid hydrolysis to study... Continue Reading
    ABSTRACT This research project studied on the kinetics of hydrolysis of cellulose to glucose. The steps employed to achieve this project involved extraction of cellulose from sawdust and subsequently, hydrolysis of starch to simple sugar. This was followed by glucose analysis. Different experiments were conducted during acid hydrolysis to study... Continue Reading
    ABSTRACT The effect of concentration of hydrochloric acid on hydrolysis of cellulose (sawdust) to glucose was studied on this research project and the steps obtained to achieve this project involved treatment of saw-dust (cellulose) with different concentrations of the acid at constant temperature of 80°... Continue Reading
    TABLE OF CONTENT Pages Title Page i Certification ii Dedication iii Acknowledgements iv Table of Contents v Abstract vii CHAPTER ONE 1.0 Introduction/Background of Study 1 1.1 Aim 4 1.2 Statement of Research Objective 4 1.3 Scope of Study 5 1.4 Literature Review 5 1.4.1 Structure and Composition of Lignocellulose Biomass 6 1.4.2 Cellulose 6 1.4.3... Continue Reading
    ABSTRACT The present paper describes the synthesis of Acid Orange(7)dye which can be used as dyes for cellulose acetate biopolymer. They were obtained by the diazotization of a monoazo component of the mono-azobenzene type, followed by coupling. The monoazo components were obtained by the diazotization of sulphanilic acid and coupling with... Continue Reading
    ABSTRACT Man’s imp act on global environment system especially in the area of dust extraction is now at a scale where it is disrupting. These dust extractors varies in major ways. The environmental degration is, in turn contributing to health threat in this part of the globe. Unfortunately most factories, workshops which suppose to posses these... Continue Reading
    ABSTRACT Man’s imp act on global environment system especially in the area of dust extraction is now at a scale where it is disrupting. These dust extractors varies in major ways.The environmental degration is, in turn contributing to health threat in this part of the globe. Unfortunately most... Continue Reading
    ABSTRACT Man’s imp act on global environment system especially in the area of dust extraction is now at a scale where it is disrupting.  These dust extractors varies in major ways. The environmental degration is, in turn contributing to health threat in this part of the globe.  Unfortunately most factories, workshops which suppose to posses... Continue Reading
    ABSTRACT Man’s impact on global environment system especially in the area of dust extraction is now at a scale where it is disrupting. These dust extractors varies in major ways. The environmental degradation is, in turn contributing to health threat in this part of the globe. Unfortunately most factories, workshops which suppose to posses... Continue Reading
    ABSTRACT Groundnut (Arachis Hypogaea) shell and carpet grass (Axonopus flexuosus) were assessed for bioethanol production using dilute acid hydrolysis (10 %, 15 % and 20 % H2SO4) and fermentation using yeast (saccharomyces cerevisiae). The percentage yields were determined to be 27.15 %, 19.69 % and 8.79 % for groundnut shell and 22.69 %, 13.92 %... Continue Reading